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Abstract

The U.S. Geological Survey (USGS) has developed and implemented an automated algorithm
to identify burned areas from Landsat scenes, producing Burned Area Essential Climate
Variable (BAECV) products. These products include per-scene outputs of (1) the probability
that a pixel was burned, given what was visible in the Landsat scenes, and (2) a burn
classification based on thresholding the burn probabilities. Annual composites of the per-
scene outputs are also generated, including (1) maximum burn probability a pixel had
across all scenes in the year, (2) the number of scenes in which a pixel was classified as
burned, (3) the Julian date of the Landsat scene that a pixel was first classified as burned,
and (4) the number of Landsat scenes with unobstructed pixel observations. The algorithm
used to produce the BAECV products is a machine-learning approach, trained and evaluated
using information about existing burned areas produced by the Monitoring Trends in Burn
Severity (MTBS) project. This report describes the provisional BAECV algorithm, and its
inputs and outputs.

Introduction

The U.S. Geological Survey (USGS) is developing science-quality, applications-ready, key
terrestrial variables and will produce them on an operational basis using historical, current,
and future Landsat observations. The terrestrial variables will follow the guidelines
established through the Global Climate Observing System and include Climate Data Records
(CDRs), which represent geophysical transformations, and Essential Climate Variables
(ECVs), which represent specific geophysical and biophysical land properties. CDRs and
ECVs offer a framework for producing long-term Landsat datasets suited for monitoring,
characterizing, and understanding land-surface change over time.

This document describes the algorithm developed and implemented by the USGS to produce
the Burned Area Essential Climate Variable (BAECV) products.

Algorithm description

The BAECV algorithm was designed to automatically extract burned areas from all
ecosystems (e.g. forest, shrubland, and grassland) visible in Landsat scenes in the
conterminous United States (CONUS). Future versions of the BAECV algorithm will be
modified for application in other regions of the world.

Landsat Scene Selection

To train and verify the BAECV algorithm, 29 World Refernce System, version 2 (WRS2)
path/rows were selected across the CONUS (Figure 1). Path/row locations were spatially
distributed across, what we refer to as algorithm regions, in order to capture major
ecosystems and differences in their fire regimes. The algorithm regions were defined by
grouping Omernik Level 2 and 3 Ecoregions (Omernik 1987) based on knowledge of fire
occurrence patterns and the temporal span over which burned areas are visible in Landsat
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scenes. The availability of existing fire information in the Monitoring Trends in Burn
Severity (MTBS) database to train and evaluate the algorithm with was also considered
when selecting path/rows. Provisional data were produced for several additional
path/rows.

The algorithm regions include (1) the Arid West, (2) the Mountain West, (3) the western
Great Plains, (4) the eastern Great Plains, and (5) the East. The Arid West was defined by
merging the Cold Deserts, Mediterranean California, Upper Gila Mountains, Warm Deserts,
and Western Sierra Madre Piedmont Level 2 ecoregions. The Mountain West consists of the
Marine West Coast Forests and Western Cordillera Level 2 Ecoregions. The western Great
Plains included the West-Central Semi-Arid Prairies Level 2 Ecoregion, and the Central
Great Plains, Edwards Plateau, High Plains, Southern Texas Plain/Interior Plains and Hills
with Xerophytic Shrub and Oak Forest, and Southwestern Tablelands Level 3 Ecoregions.
The eastern Great Plains included the Temperate Prairies Level 2 Ecoregion and the Cross
Timbers, Flint Hills, and Texas Blackland Prairies Level 3 Ecoregions. All remaining
ecoregions were used to define the East algorithm region.

Legend
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Figure 1. Burned Area Essential Climate Variable algorithm regions and Landsat path/rows used to
train and evaluate the algorithm.

For each of the 29 path/rows used for training and verification, we gathered surface
reflectance products produced using the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS; Masek and others, 2006) for all available scenes collected by
Landsat 4 Thematic Mapper (TM), Landsat 5 TM, Landsat 7 Enhanced Thematic Mapper
Plus (ETM+) both with the Scan Line Corrector (SLC) on (1999-2003) and SLC off (2003-
present). Scene selection was limited to those with (1) cloud cover less than or equal to
80%, (2) L1T processing, and (3) georeferencing RMSE < 10 m. Both the surface reflectance
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and the source metadata were ordered through Earth Science Processing Architecture
(ESPA). This resulted in 17,612 Landsat scenes for use in this study (Table 1).

Table 1. Landsat path/rows included for use in training and verification by algorithm region.

Number of scenes

Region Path Row Landsat4 Landsat5 Landsat? Total
East 11 29 2 314 178 494
East 14 32 2 371 188 561
East 14 35 1 392 199 592
East 15 42 3 434 250 687
East 17 39 1 444 227 672
East 19 35 0 386 192 578
East 21 29 2 303 171 476
East 22 39 3 405 223 631
East 25 34 1 374 202 577
East 26 27 0 329 177 506
Eastern Great Plains 28 31 1 331 187 519
Eastern Great Plains 28 33 8 372 213 593
Eastern Great Plains 30 26 1 303 191 495
Western Great Plains 27 41 4 341 217 562
Western Great Plains 32 36 0 451 254 705
Western Great Plains 33 30 3 393 234 630
Western Great Plains 35 28 3 374 214 591
Arid West 32 38 3 473 260 736
Arid West 35 37 8 465 255 728
Arid West 37 35 8 496 264 768
Arid West 38 33 1 430 231 662
Arid West 41 32 0 388 215 603
Arid West 41 36 4 500 262 766
Arid West 44 33 4 442 231 677
Mountain West 35 32 4 430 229 663
Mountain West 41 26 0 355 197 552
Mountain West 45 28 0 379 196 575
Mountain West 46 31 3 379 195 577
Mountain West 47 27 0 300 136 436
Total 70 11,354 6,188 17,612
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Figure 2. Steps included in preprocessing, training, and prediction for the Burned Area Essential
Climate Variable algorithm.
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Preprocessing of Landsat scenes

Several preprocessing steps were applied to each Landsat scene prior to training and
applying the BAECV algorithm. The spatial coverage of each Landsat scene varied, so after
ESPA orders were fulfilled and downloaded, each Landsat scene was cropped to the
bounding box of the Landsat path/row polygon. This ensured that each scene had the same
number of rows and columns to simplify further processing. During this step, the individual
quality assurance (QA) bands were also combined into one single QA band with unique
values for each mask (e.g., cloud, water, snow/ice, or fill).

A number of spectral indices were also calculated for each scene. These indices included the
normalized difference vegetation index using bands 3 and 4 (NDVI; Tucker, 1979), the
normalized moisture difference index using bands 4 and 5 (NDMI; Wilson and Sader, 2002),
the normalized burn ratio using bands 4 and 7 (NBR) and a second variant of the
normalized burn ratio using bands 5 and 7 (NBR2; Lopez-Garcia and Caselles, 1991; Key
and Benson, 1999). These spectral indices are normally floating point values varying
between 1.0 and -1.0, but were multiplied by 1000 and represented as integers to reduce
memory requirements during processing.

Seasonal and annual summary statistics were derived from the time-series of Landsat
scenes in a path/row. Each scene was categorized into a season based on the month the
scene was collected; winter included scenes from December of the previous year, and
January, and February; spring included scenes from March, April, and May; summer
included scenes from June, July, and August; and Fall included scenes from September,
October, and November. Seasonal summaries were calculated as the mean for each band
and each spectral index. Annual summaries included maximum values for each spectral
index (NDVI, NDMI, NBR, NBR2). Pixels flagged as cloudy, water, snow/ice, or fill in the QA
masks were excluded when calculating the seasonal and annual summaries. Change metrics
for the four spectral indices were also calculated for each scene in the time series of Landsat
scenes as the difference between the spectral index of a given scene in the time series and
the maximum value of the same spectral index for the previous year.

Burned area training and verification data

The Monitoring Trends in Burn Severity data (MTBS; Eidenshink and others, 2007) were
the primary data source used for training and evaluating the results of our algorithm. These
data include large fires (= 500 acres in the East and = 1000 acres in the West). Each MTBS
fire has a fire perimeter shapefile and a categorical burn severity raster layer derived from
visual interpretation of pre- and post-fire Landsat imagery. The raster burn severity
categories include (1) unburned to very-low severity, (2) low severity, (3) moderate
severity, (4) high severity, (5) increased greenness, and (6) masked because of clouds or
gaps in Landsat 7 data. We used MTBS severity values of 2, 3, and 4 to indicate that a pixel
was burned. The MTBS fires used in this study span the Landsat 4, 5, and 7 epochs (1984 -
2011); and included approximately 17,025 fires burning more than 501,660 square
kilometers. For this analysis, the MTBS fire perimeters and severity rasters were cropped to
the path/row polygons before additional processing.
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Burned Area Essential Climate Variable Algorithm

Burned area probability mapping

The first step in the BAECV approach is to estimate the probability that a pixel was burned.
To complete this step, generalized boosted regression models (GBRM) were used. These
models tend to produce higher binary classification accuracies than other machine-learning
approaches (Hastie and others, 2009). To train and evaluate the GBRM, points were
randomly selected within the polygon of each Landsat path and row. Up to 2,000 point
locations were located within MTBS perimeters and attributes from each fire were assigned
to the points, including the date of burn. An additional 2,000 point locations were randomly
located outside of the MTBS perimeters. Points were forced to be a minimum of 30 m apart
to avoid sampling the same pixel more than once. At each point location, surface reflectance,
thermal bands, and spectral indices values were collected or generated from the individual
Landsat scenes. Values for the seasonal summaries, annual summaries, and change metrics
at each point were also calculated. Information about the date and sensor (Landsat 4, 5, or
7) of each scene were attached to each point as well. These data were split into training and
validation groups based on years; 50% of the years were used for training and 50% were
used for validation. Training years included 1984, 1987, 1988, 1991, 1992, 1995, 1997,
1998, 2000, 2001, 2003, 2005, 2006, and 2007. After the training and validation split, all
points labeled as burned by the MTBS were retained and an equally sized sample of
unburned points were randomly selected.

Using the training point data, a GBRM was trained for each of the 5 regions of the CONUS.
Training GBRMs requires users to specify a number of parameters that control the final
model structure. The parameters include the (1) number of trees, (2) number of splits per
tree, and (3) learning rate between successive trees (Hastie and others, 2009). The number
of trees is simply the number of trees to fit in the entire sequence of trees in the GBRM. The
second parameter controls the number of splits allowed in each tree. Individual trees are fit
in sequence and when fitting the tree, the learning rate specifies the weight to apply to
prediction errors from the previous tree in the sequence when fitting a new tree in the
sequence.

Through a trial-and-error process, testing the performance of different learning rates and
number of splits per tree, the learning rate was set at 0.01 and number of splits per tree at
3. The number of trees used in the GBRMs was selected systematically by evaluating
changes in the loss metric for the validation point data as a function of the tree’s number in
the sequence trees. The objective here was to determine the smallest number of trees in the
sequence needed to achieve the minimum value in the loss metric. Initially, GBRMs were
fitted for each region using 5,000 trees. The final, reduced number of trees was found by
locating the tree at which the change in the loss rate was less than 1% of the moving
average of the loss rate from the previous 100 trees. The final number of trees was rounded
to the nearest 100 or 1000 (in the direction of lower loss). Area under the curve (AUC) of
receiver-operator characteristic (ROC) plots was calculated to judge the accuracy of the
final GBRMs (Hanley and McNeil, 1982). After fitting the GBRMs, they were applied to each
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image in the time-series of Landsat scenes to generate burn probability images. Pixels
flagged as being water, clouds, cloud shadows, snow or ice, and fill in the QA masks were
excluded from the analysis.

Burned area classification

The second step in the BAECV algorithm was to threshold the individual burn probability
images to produce binary images specifying which pixels were had burned or not. Through
ad-hoc visual analysis, the burn probability images often had clumps of pixels with very-
high burn probabilities and the clumps were often connected by pixels with lower burn
probabilities within MTBS fire. To capture this observed pattern, a region-growing method
was implemented for the second step of the BAECV algorithm. First, seeds for potential
burned area regions were identified by thresholding the burn probability images into a
preliminary binary burned /unburned image; the threshold value is referred to as the ‘seed
probability threshold’. Second, a seed size threshold was used to remove burned area
regions below a minimum size. Third, neighboring pixels were added to seeds if the
neighboring pixels had a burn probability greater than or equal to the ‘spread probability
threshold’. The third step was completed in an iterative fashion until no additional
neighboring pixels with burn probabilities above the ‘seed probability threshold’ could be
found. Once the three thresholds were set, binary burn classification images were generated
for each Landsat scene in the time series. For the provisional BAECV data, the seed
probability threshold was set to 95%, the seed size threshold was set to 45 pixels (10
acres), and the spread probability threshold was set to 85%.

Generation of annual composites, including temporal filtering

In addition to the scene-level burn probability and classification images, a number of annual
composite products are generated to assist in the analysis and comparison of the BAECV
results. The annual composites include (1) the maximum burn probability across all the
individual Landsat scenes in a year, (2) the number of individual Landsat scenes that a pixel
was classified as burned, (3) the number of Landsat scenes with unobstructed pixels (pixels
that were not clouds, shadows, water, snow/ice, or fill), and (4) the Julian day of the first
Landsat scene in which a burned pixel was observed in the year.

Dependencies

The BAECV algorithm depends on input Landsat Surface Reflectance products produced
using LEDAPS and the Landsat thermal band. Processing by the BAECV algorithm is
dependent upon these data being delivered as either Hierarchical Data Format - Earth
Observation System (HDF-EOS) or GeoTIFF image files.

The BAECV algorithm is dependent on annual MTBS burn severity raster layers and burned
area polygons for training data.

The prototype code for the BAECV algorithm depends on a number of open-source libraries
including: GDAL, numpy, OpenCV, scipy, and sci-kit learn (Table 2).
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Table 2. Open source libraries used by the Burned Area Essential Climate Variable algorithm and
links to source code and documentation.

Library name Link

GDAL (Geospatial Data Abstraction Library) http://www.gdal.org

NumPy http://www.numpy.org
OpenCV (Open Source Computer Vision) http://opencv.org

SciPy http://www.scipy.org
scikit-learn http://scikit-learn.org/stable/
Inputs

The primary inputs to the BAECV algorithm are the Landsat Surface Reflectance products.
These are used with the algorithm both to train and predict. The MTBS burn severity raster
layers and burned area polygons (with date information) are required to train the BAECV
algorithm.

Outputs

The BAECV outputs include: per-scene outputs corresponding to individual Landsat scenes
and annual composites summarizing the individual scenes for a calendar year. Per-scene
products include burn probabilities and burn classifications. Burn probability (BP) products
are continuous data, representing the probability that a pixel was burned by fire, given what
is visible in the Landsat scenes. Burn probabilities range between 0 and 1,000 as they were
scaled by a factor of 10. A threshold process was applied to the BP data to produce the burn
classification (BC) products. Contiguous burned area patches (identified using a 4-neighbor
rule) in the BC data were assigned positive values (patch id), in addition to other attributes
quantifying the number of pixels in the seed patch (Area), the number of pixels in the entire
patch (FilledArea), and maximum, mean, and minimum burn probability values in the patch
(MaxIntensity, MeanIntensity, and MinIntensity attributes, respectively). Both the BP and
BC BAECV products retain the QA masks; specified by negative values in the data. Four
annual composite BAECV products are provided. The annual composites were generated by
stacking all per-scene outputs for a single year. Annual composite outputs include:

1. The maximum value per pixel for burn probability for a year (bp).

2. The count of per-scene burn classification images where the pixel was classified as
burned (bc). Values in these imagers are zero or larger. No burned areas were
identified in pixels with values of zero in these images.

3. The Julian date of the first per-scene burn classification image where the pixel was
classified as burned (bd). Values in these images range between 0 and 366.

4. The number of per-scene images with a cloud-free observation for a given pixel (gc).
Values in these images are zero or larger.
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Prototype Code

The BAECV algorithm has been implemented in both python and C++ code. This code is
available upon request and will be made publicly available after approved by the USGS.
Provisional products were produced using the python code.

Verification Methods

The BAECV prototype code, originally written in python, has been used to generate
products for a number of path/rows in CONUS. The processing-intensive portions of the
python code have been ported to C++ and outputs from both the python and C++ code are
similar, but with small differences in burn probabilities because of the small amount of
randomness introduced when training GBRMs.

The BAECV outputs are undergoing rigorous validation following the Committee for Earth
Observation Land Product Validation protocols. Results of these validation studies will be
published as peer-reviewed journal articles as they become available.

Maturity

The BAECV algorithm and products are provisional. Provisional data have not been
validated. These data may be subject to significant change and are not citeable until
reviewed and approved by the USGS. Additional changes to the algorithm and products are
expected pending feedback from provisional data users, to adapt the algorithm to regions
beyond CONUS, and to incorporate Landsat 8 scenes.
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